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Abstract— In this paper we find a lower  bound of second-

order nonlinearity of Boolean function 

),()( 1

pn xTrxf   where ,1222  rrp ,*

2rF  

and .5rn It is also demonstrated that the lower bound 

obtained in this paper is much  better than the lower 

bound  obtained by Iwata-Kurosawa [17] and 

Gangopadhyay, Sarkar and Telang (Theorem 1, [12]). 

 

Keywords— Boolean function, Second-order nonlinearity, 

Derivatives 

 
INTRODUCTION 

 

Let 2F  be the prime field of characteristic 2. Let 
nF2  be 

an n-dimensional vector space over 2F . The finite field 

nF
2

is also an n-dimensional vector space over 2F . Let 

 nbb ,...,1  be a basis of nF
2

 over 2F .  Thus, for any 

nFx
2

  there exists a vector   n

n Fxx 21,...,   such that 

nnbxbxx  ...11  . This establishes a natural 2F -vector 

space isomorphism between nF
2

 and
nF2 , both considered 

as vector spaces over the prime field 2F . We shall frequently 

identify nFx
2

  with the vector   n

n Fxx 21,...,   assuming 

a fixed basis  nbb ,...,1 . Therefore,
nF2  can be viewed 

as .
2nF Boolean function on n-variables is a mapping from 

nF2  to 2F  (equivalently from nF
2

 to 2F ).  The set of all 

Boolean functions on n-variables is denoted .nB  The 

Hamming weight number of 
n

n Fxxxx 221 ),...,,(  is 

defined as 



n

i

ixxwt
1

)( .  The Hamming distance between 

two Boolean functions f and g is defined as 

  ,)()(:),(
2

xgxfFxgfd n   where the 

cardinality of a set S  is denoted by .s  The Algebraic 

Normal Form (ANF) of a Boolean function nBf   is 

defined as 

),()(
1

),...,( 21







n

i

a

ia
Faaa

i

n
n

xxf   

where 2Fa  for all .2

nFa  The maximum value of  

)(awt such that 0a  is called the algebraic degree of f  

denoted by ).deg( f The rth-order Reed-Muller code 

),( nrR of length 
n2  and of order r  is the set of all Boolean 

functions on n-variables with  algebraic degree at most r. 

 

Definition 1: The nonlinearity of Boolean function 
nFf 2  is 

defined as the minimum Hamming distance of f  from all 

affine Boolean functions (affine Boolean functions are those 

Boolean functions whose algebraic degree is at most 1). More 

over 

 ,|),(min)( nH Allfdfnl   

where nA  is the set of all affine Boolean function on n-

variables. 

 

Definition 2: Let nBf  . For every non-negative integer 

nr 0 , the  rth-order nonlinearity of  f is  the minimum 

Hamming distance of f from all n-variable Boolean functions 

of degree at most r )1( r   and denoted by )( fnlr . In 

other words, the rth-order nonlinearity of f  is equal to the 

minimum Hamming distance of f  from the rth-order Reed--

Muller code ),( nrR  of length 
n2  and of order r. The 

sequence of values )( fnlr , for r ranging from 1 to n-1, is 

said to be nonlinearity profile of Boolean function  f.  
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When Boolean functions are used in stream or block 

ciphers their nonlinearities play an important role with respect 

to the security of the considered ciphers. The relationship 

between explicit attack and nonlinearity on symmetric ciphers 

was found by Matsui [22].  The best known upper bound [5] 

on )( fnlr  has following asymptotic version 

)(2)21(
2

15
2)( 2221   r

n

rn

r nOfnl . 

There is a lot of research on first-order nonlinearity. Unlike 

nonlinearity very little is known about higher-order 

nonlinearity. There are no efficient algorithm to compute the 

rth-order nonlinearity of Boolean function f  for )1( r . 

However, in [10, 11, 18] list decoding algorithms for higher 

order Reed-Muller codes are used to compute second-order 

nonlinearities. Carlet [3] provides a technique of computing 

lower bounds of higher-order nonlinearities recursively. In the 

same paper Carlet provides general lower bounds on the 

nonlinearity profiles of Boolean functions belonging to 

several important classes including Welch, Kasami and 

multiplicative inverse functions. Gangopadhyay, Sarkar and 

Telang [12] have found the second order-nonlinearity of 

),()( 1

pn xTrxf   where ,1222  rrp ,*

2nF  

and .6rn Sun and Wu [29], Deep Singh [27] have found 

the second order-nonlinearity of ),()( 1

pn xTrxf   where 

,1222  rrp ,*

2rF  and rn 4  and rn 3  

respectively. For more results in this direction we refer to [13-

15, 20, 28] 

 

The lower bound of rth-order nonlinearity of Boolean 

function f from a given algebraic immunity has been studied 

in [4]. It was improved in [2]. It gives better results than the 

results obtained by Iwata-Kurosawa [17]. In this paper we use 

the technique developed by Carlet to find out the lower bound 

of second-order nonlinearities of Boolean function 

),()( 1

pn xTrxf   where ,1222  rrp ,*

2rF  

and .5rn  It is also found that the lower bound obtained in 

this paper is much  better than the lower bound obtained by 

Iwata-Kurosawa [17], and  Gangopadhyay, Sarkar and Telang  

[12]. 

. 

 

PRELIMINARIES 

 

Definition 3: The Walsh transform of nBf  at 
nF2  

is defined as  





nFx

xxf

fW

2

)()1()(   

The multiset ]:)([ 2

n

f FW  is called the Walsh 

spectrum of the Boolean function f. The relation between 

nonlinearity and Walsh spectrum is given as follows 

.)(
2

1
2)( max

2

1 


f

F

n Wfnl
n

   

Using Parseval's equality it can be proved that for any 

positive integer n, their exist a 
nF2 such that 

22)(

n

fW  , which implies .22)(
1

21










 

n

nfnl  

The derivative of a Boolean function nBf   with respect 

to nFa
2

  is defined as a Boolean function  

)()()( xfaxfxDa  for all nFx
2

 . 

Definition 4: Suppose laaa ,...,, 21 is a basis of k-

dimensional subspace Vk of nF
2

. The kth derivative of f with 

respect to Vk is defined as a Boolean function 

 

)(...)(
11

xfDDDxfD aaaV kkk 
 for all nFx

2
 . 

 

 The kth derivative of f is independent of the choice of the 

basis of Vk.  

 

Remark 1: It is to be noted that the  )( fD
kV  is 

independent of the choice of the basis of Vk. 

 

The trace function from nFL
2

  into 

cFS
2

 (where nc | ) is defined as  








1

0

2)(
c

n

i

L

S

ci

xxTr , for all .
2nFx  

If 1c , we called absolute trace function and denoted 

as )(1 xTr n
or ).(xTr )(1 xyTr n

 is called an inner product 

of  x and  y for any .,
2nFyx  The  trace function 

L

STr  

satisfies the   following properties [21].  

1. )()()( yTrxTryxTr L

S

L

S

L

S    for all 

S,  and Lyx , . 

2. )()( xTrxTr L

S

sL

S  for all Lx and .2cs  

3. (Transitivity property) Let R  be a finite field. Let F  

be a finite extension of R  and L   be  a finite 

extension of F , that is .RFL  Then  

 

 )()( xTrTrxTr L

F

F

R

L

R   for all .Lx  

 

2.1 Quadratic Boolean functions 

 

In this subsection, we give some lemmas which are used in 

this paper.  
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Let q be a power of 2 and let V be an n-dimensional vector 

space over qF . A function Q from V to qF  is said to   be a 

quadratic function on V, if it satisfies following: 

 

1. )()( 2 xQccxQ   for any qFc and ,Vx  

2. )()()(),( yxQyQxQyxB   is bilinear on 

V. 

The kernel [1, 25] of Q  is the subspace of V  defined by 

 

 .,0),(:
22 nn FyallforyxBFxf   

 

Lemma 1. ([1], Propoition1):  Let V be a vector space over 

a field qF  of characteristic 2 and qFVQ :  be a 

quadratic form. Then the dimension of V and the dimension 

of the kernel of Q have the same parity. 

 

Lemma 2. ([1], Lemma1): Let f  be a quadratic Boolean 

function. The kernel of f  is the subspace of nF
2

 having 

those b such that )( fDb  is constant. 

 

  tConsfDFb bf n tan)(:
2

 . 

 

Lemma 3. [1, 25] If 22
: FFf n   is a quadratic Boolean 

function and ),( yxB is the bilinear form associated to it. 

Then the Walsh spectrum of f depends only on the dimension, 

k, of the kernel, f  of ),( yxB . The weight distribution of 

the Walsh spectrum of  f  is: 

 

)(fW  Number of    

0 knn 22  

22

kn

 2

2

)0(2

1

2)1(2





kn

f

kn

 

22

kn

 2

2

)0(2

1

2)1(2





kn

f

kn

 

 

Carlet [3] proved the following results. 

 

Proposition 1. ([3], Proposition 2) Let f be a n-variable  

Boolean function and r be  a positive integer less than n, we 

have 

))((max
2

1
)( 1

2

fDnlfnl ar
Fa

r
n




 . 

 

 

 

Corollary  1. ([3], Corollary 2) Let f  be an n-variable 

Boolean function and r  be a positive integer smaller then n  

Assume that, for some non-negative integers M and m , we 

have 

 
mn

ar MfDnl 22)( 1

1  

                (1) 

for every non-zero nFa
2

 . Then we have 

 

n
mnn

r Mfnl 22)12(
2

1
2)( 11  

 

2

1

1 2
2

1
2)(



 

mn

n

r Mfnl .           (2) 

 

Definition 5:    ([21], Page 99):  A polynomial of the form  





n

i

q

i

i

xxL
0

)(   

with the coefficients i  in an extension field nq
F  of qF is 

called a Linearized polynomial (q-polynomial) over nq
F  . 

MAIN RESULTS 

 

Lemma 4. Consider the Boolean function 

),()( 1

pn xTrxf   where ,1222  rrp ,*

2rF  

and .5rn Then the dimension of the kernel of the bilinear 

form associated to ))(( xfDa    is either r or r3 .   

 

Proof: The algebraic degree of Boolean function 

)(xf is 3 . The derivative of  )(xf  with respect to 

*

2nFa  is 

 

)()())(( xfaxfxfDa    

))(())(())(( 122

1

122

1

22  
rrrr

xTraxTrxfD nn

a   

12212222

1

222

(())((  
rrrrrr

xaxaaxTrxfD n

a   

                      ))12222212212 2222  
rrrrrrrr

axaxaxa                                            

 

The Walsh spectrum of Boolean function ))(( xfDa   is 

equal to the Walsh spectrum of the function )(xG , where 

)(xG  is obtained by removing all affine monomials 

from ))(( xfDa  . 

 

))(()( 12212222

1

222  
rrrrrr

xaxaaxTrxG n 
. 

)(xG can also be written as 

))(()( 12222122

1

2442  
rrrrrr

xaaxaTrxG n 
. 

 

Manish Garg / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 715-720

717



Because  122 r
 and 12 r

are not lie in the same 

cyclotomic coset. Therefore, )(xG  is not equal to zero for 

*

2nFa . Therefore )(xG  is a quadratic Boolean function. 

By Lemma 2, 3, the Walsh spectrum of )(xG  depends on 

the dimension k  of the kernel of )(xG  which is the 

subspace of those b  such that ))(( xGDb   is constant. The 

derivative  ))(( xGDb    is 

 

)()())(( xGbxGxGDb  
rrr

xbaabTrxGD n

b

2222

1 )((())((       

                     ))())( 2222222 22222

xbabaxbaab
rrrrrrr

                     

                      ))(( 12212222

1

222  
rrrrrr

babaabTr n  . 

 

Since nFbax
2

,,   and  .*

2rF  Therefore, xx
n

2
, 

aa
n

2
,  bb

n

2
,  

r2
. We get 

 

)))((())((
23443 2222222

1

rrrrrrr

bababaaxTrxGD n

b  

                       )))( 222 24 rrr

baa   + Constant terms. 

Clearly, ))(( xGDb  is equal to the constant if and 

only if 

 

.0)()( 2222222222 2423443


rrrrrrrrr

baabababaa  

Or it is equivalent to the following 

 

.0))()( 2222222 32332

 baaabbabaa
rrrrrrr

     (3) 

 

It is to be noted that equation  3  is a 
r2 -polynomial. Since 

a polynomial of the form 



n

i

q

i

i

xxL
0

)(   with the 

coefficients i  in an extension field mq
F  is called q-

Polynomial over mq
F .  Let 

 

.))()()( 2222222 32332

baaabbabaabM
rrrrrrr



 

As a consequence, the dimension of the kernel of  )(xM  

equals to sr , for ,2,1,0s or .3                                     

Now quadratic form from 5q
F  to qF )2( rq     

)),(()( 12212222 222  
rrrrrr

xaxaaxTrxN L

E   

Where rFL 52
  and .

2rFE  

The set of roots of )(xM  is also the kernel of )(xN . 

Indeed, the kernel of )(xN  is the set of those b  such that 

0)( xB   for all x  where )(xB  is given as                                      

)()()()( bxNbNxNxB   

Because )),(())((
2

xBTrxGD E

Fb  we get 

)).(()( bxMTrxB L

E  

Therefore, the kernel of )(xN  is equal to the kernel 

of )(xM . By Lemma 1, the dimension of the kernel of 

)(xN  must have the same parity as 5 . Hence this is odd. 

Therefore, the dimension of the kernel of )(xN  is either 1  or 

3  which imply that the one of )(xM  is either r or r3 , that 

is, the dimension of the kernel of the bilinear form associated 

to ))(( xfDa   is either r or r3 (k = r or k= 3r).  

 

Theorem 1. Consider the Boolean function 

),()( 1

pn xTrxf   where ,1222  rrp ,*

2rF  

and .5rn Then  

 

.22))(( 4

433

1

2



 

rn

nxfnl   

 

Proof : From Lemma 4,  the dimension of the kernel of  the         

bilinear form associated to ))(( xfDa   is either either r or 

r3 (k = r or k= 3r). From Corollary 1,  nonlinearity   of 

))(( xfDa   that is, )))((( xfDnl a   is either 

21 2
2

1
2

rn

n



  or .2
2

1
2 2

3

1

rn

n



  Therefore, we have                     

 

.2
2

1
2))))((((max 21

2

rn

n

a
Fa

xfDnl
n






  

 

Therefore, by Proposition 1, we have 

 

.22))(( 4

4

1

2



 

rn

nxfnl                 (4) 

 
*

2nFa , we also have 

.2
2

1
2)))((( 2

3

1

rn

n

a xfDnl



               (5) 

 

We can also improve the lower bound on comparing 

equation 5 with the equation 1. After comparing, we get 
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1M and .
2

23 


rn
m . Therefore, using the value of 

M  and m  in equation 2, we get                                      

 

.22))(( 4

433

1

2



 

rn

nxfnl                  (6) 

 

 

From the above it is clear, the lower bound obtained by 

equation 6  is better than the lower bound obtained by 

equation   4  for 1r . So, we have                                

 

 

.22))(( 4

433

1

2



 

rn

nxfnl   

 

COMPARISON 

 

We compare the lower bound obtained in Theorem 1 with 

the lower bound obtained by Iwata-Kurosawa [17] and  the 

lower bound obtained by                                    

Gangopadhyay, Sarkar and Telang (Theorem 1, [12]) in  

following Table .               

 

n, r 10, 

2 

15, 3 20, 4 25, 5 30, 6 

Bound 

obtained in 

Theorem 1 

256 10592 393216 1.3811 

* 107 

4.6976 

* 108 

Iwata-

Kurosawa’s 

bound 

192 6144 196608 6.2914 

* 106 

2.0132 

* 108 

Bound 

obtained in 

(Theorem 

1, [12]) 

N/A N/A N/A N/A 4,4196 

* 108 

 

 

35, 7 40, 8 45, 9 50, 10 55, 11 60,12 

1.5661 

* 1010 

5.1539 

* 1011 

1.6814 

* 1013 

5.4535 

* 1014 

1.7616 

* 1016 

5.6745 

* 1017 

6.4424 

* 109 

2.0615 

* 1011 

6.5970 

* 1012 

2.1110 

* 1014 

6.7553 

* 1015 

2.1617 

* 1017 

N/A N/A N/A N/A N/A 5.5844 

* 1017 

 

Table. Comparison of the Lower bounds of higher-order 

nonlinearities. 

 

It is clear from the above table that our lower bound is much 

better than lower bounds obtained by Iwata-Kurosawa and 

Gangopadhyay et al. 

 

CONCLUSION 

 

In this paper, we find a lower bound of second-order 

nonlinearity of a class of Boolean functions  

),()( 1

pn xTrxf   where ,1222  rrp ,*

2rF  

and .5rn The algebraic immunity  of )(xf  is at most 3 

because the algebraic degree of )(xf  is 3 

).()(( 0 fdfAI  Therefore, the lower bound of second-

order nonlinearity of )(xf  can not be obtained from  the 

relation between rth-order nonlinearity and the algebraic 

immunity as given in [2, 4]. The lower bound of second-order 

nonlinearity of )(xf  is much better than lower bound 

obtained in [17] and (Theorem 1, [12]).                                  

Carlet [3] has obtained a way of finding out lower bounds of 

rth-order nonlinearities of Boolean functions. A natural 

question is whether the bounds obtained by Carlet can be 

improved for special classes of functions. It is observed that of 

second-order nonlinearities of cubic functions more refined 

bounds can be obtained by using the technique developed by 

Carlet and results related of dimensions of solutions spaces of 

linearized polynomials which was done by Gangopadhyay et 

al.  [12, 15] and subsequently by several other authors [28, 29]. 

These bounds are also related to covering radius of second-

order Reed-Muller codes. From the cryptographic and coding 

theoretic perspectives we feel that it is important to consider 

specific classes of functions and to obtain                               

more information about their second-order nonlinearities. This 

has motivated our research.                                                                             
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